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Abstract—Nodes within existing P2P networks typically ex-
change periodic keep-alive messages in order to maintain network
connections between neighbours. Keep-alive messages serve a
dual purpose, being used to detect node failures and preventing
idle connections being expired by NAT devices. However, despite
keep-alive messages being widely used the interval between
messages is typically fixed below the timeout value of most NAT
devices based upon crude rules of thumb.

Furthermore, although many studies have been conducted
to traverse NAT devices while others seek to improve failure
detection in P2P overlay networks; the limitations of NAT
devices have received little research attention. This paper explores
algorithms which allow nodes to adapt to the timeout values of
individual NAT devices and investigates the resulting trade-offs.

I. INTRODUCTION

Using stateful translation tables that map multiple private
addresses onto a single public address, Network address
translation (NAT) devices allow several nodes within a private
network to share a single public IP address. This allows private
home networks and business intranets to interface with public
networks such as the Internet. The widespread use of NATs has
helped to alleviate the IPv4 network address shortage problem.

However due to limited resources and the vulnerability to
denial of service attacks, NAT devices cannot indefinitely hold
the state of their translation tables. As a result, idle connections
are eventually expired and connection states removed after a
NAT timeout period.

To avoid connections becoming idle, connected nodes must
periodically exchange keep-alive messages at an interval
shorter than the timeout period. As a result, keep-alive mes-
sages are widely used throughout all types of networks to
maintain connections between nodes. The keep-alive period k
defines the maximum interval that a connection between two
nodes can remain inactive. Keep-alive messages are exchanged
if no message has been sent within a keep-alive period to
ensure the corresponding node is both still online and to avoid
the connection being removed by a NAT device.

Keep-alive messages therefore serve a dual purpose, firstly
keep-alive messages are used to detect the departure of un-
graceful nodes. When a node that is part of the network
receives a keep-alive message it responds by returning an
acknowledgement message. Nodes that have left the network
do not respond allowing failed connections to be detected and
replaced. By proactively replacing failed connections nodes
can ensure they remain well connected to a network overlay.

The second purpose of keep-alive messages is to prevent
connections from becoming inactive and, as a result, being
removed by NAT devices. Every time a packet is sent through
a connection the NAT device at the other end restarts the time-
out period. Keep-alive messages therefore serve as artificial
packets, forcing NAT devices into resetting the timeout period
and keeping the connection alive.

The keep-alive period is typically a fixed periodic interval
uniform across all nodes in the network. The size of this keep-
alive period interval is often determined by hand by application
developers and is selected to fall within the timeout values of
most NAT devices. The designers of BitTorrent [1] for example
have set the default keep-alive period to k = 120 seconds.
However RFC 1122 [2] recommends TCP stacks should wait
for at least 2 hours between sending TCP keep-alive packets,
accordingly NAT devices should not expire a TCP connection
within this time. As a result a node in a BitTorrent network
may be sending sixty times more keep-alive messages than is
strictly necessary.

In this paper we explore and empirically analyse for the first
time algorithms that can efficiently adapt keep-alive intervals
to match the timeout values of NAT devices. and investigate
the trade-offs of extending keep-alive intervals. Specifically
the contributions of this paper are:

• We formally explain and analyse iGlance an existing
algorithm that roughly estimates the timeout values of
NAT devices. Accordingly we propose a more accurate
algorithm based upon traditional binary search that can
efficiently find the timeout value of NAT devices.

• We evaluate the proposed algorithms using real network
data from the RedHat9 BitTorrent distribution. Using our
trace driven simulation platform we compare the adaptive
algorithms to the standard periodic approach commonly
used throughout P2P networks.

• Using distinct evaluation metrics we identify the trade-
offs in terms of bandwidth and the incurred failure detec-
tion delay when aligning keep-alive intervals to timeout
values.

• Finally we show by augmenting all the algorithms with
a simple gossip mechanism it is possible to extend
keep-alive intervals, thereby reducing bandwidth spent
on maintenance without timing out connections while
retaining a reasonable average failure detection delay.



2

The rest of the paper is organised as follows. Section two
provides an overview of existing work. Section three explains
the well established standard keep-alive mechanism. Section
four describes our binary search based approach while our
experimental methodology is described in section five. Section
six presents the results of the simulated experiments, com-
paring our algorithm with the standard keep-alive algorithm.
Finally, section seven concludes the paper.

II. RELATED WORK

While research often focuses upon making P2P network
overlays flexible, efficient and robust [3], [4], the research
community has identified reducing the cost of maintenance
as an important open problem [5]. While a number of studies
attempt to improve network failure detection; to the best of
our knowledge, the problem of adapting to timeout values of
NAT devices has not yet been fully addressed in this context.

The closest work to our own is iGlance [6], authored by
David Barrett. iGlance an open-source Voice-Over-IP (VOIP)
application allows clients to adapt the size of the keep-alive
interval to an approximate NAT timeout period. Each client
creates two connections with the server, one for live traffic
and the other as a test connection. The live traffic connection
always operates on a known safe keep-alive period klive, while
the test connection experiments with an alternative keep-alive
interval ktest. If a corresponding node acknowledges a keep-
alive message through the test-connection the interval ktest is
doubled. Furthermore klive is updated to reflect the new safe
keep-alive period ktest if ktest is larger than the current value
of klive.

Should the corresponding node fail to acknowledge the
keep-alive message, it is presumed to have timed out by the
NAT device and the interval is halved. We implement a slight
modification of this approach, by sending a keep-alive message
through the live connection as well as the test connection when
ktest period expires. Should the only the test connection fail
to respond we can safely assume a NAT device has expired
the connection, whereas should both connections fail it’s likely
the corresponding node has left the network.

By experimenting with increasingly large keep-alive inter-
vals iGlance can approximate the NAT timeout period and
reduce the number of keep-alive messages sent, whilst also
allowing the live connection to operate within a safe interval.
However, the simple process of doubling and halving the
keep-alive interval may never find the exact timeout value
of a particular NAT device. Furthermore, iGlance’s adaptive
algorithm is only a small part of much larger overall VOIP
application. The results of adapting to the timeout values of
NAT devices, as far as we know, have never been empirically
tested. In this paper, we implement and evaluate the iGlance
algorithm comparing it against the standard periodic approach
and our own algorithm1.

A number of other studies attempt to reduce the number of
keep-alive messages needed to check corresponding nodes are
still online without considering the limitations of NAT devices.

1We would like to thank David Barrett for providing us extensive details
of the iGlance adaptive algorithm.

One approach is not to send any keep-alive at all and reactively
recover from failed connections as messages timeout. While
this completely removes the cost of maintenance, failures
are only detected when connections are needed. Rhea et al.
in [4] explain how this approach is ineffective as message
must timeout before they can be resent incurring potentially
long network delays. Furthermore, they also show reactive
recovery may exacerbate existing problems by adding to
network congestion through a positive feedback loop.

Our previous work in [7], introduced three algorithms that
determined the required frequency of keep-alive messages by
using the current uptime to predict the remaining uptime
of nodes. By prioritising keep-alive messages to nodes that
are more likely to fail, the expected delay between failures
occurring and their subsequent detection can be reduced.
Our experiments show compared to the standard periodic
approach our predictive algorithms can reduce the median
failure detection delay by around 20%.

So and Sirer in [8] analyse the tradeoff between resource
consumption and detection latency when detecting node fail-
ures. They describe two approaches that minimise the failure
detection delay and bandwidth spent respectively, given that
the average session time of each individual node is known.
Dedinski et al [9] use cooperation between nodes with mutual
neighbors to effectively reduce maintenance overhead by send-
ing keep-alive messages in sequence rather than in parallel.
Five distributed failure detectors are studied empirically in
[10], showing that the average detection delay can be sig-
nificantly and effectively reduced by sharing information of
failures as they are detected between nodes.

III. APPROACH

This section first describes the current state of the art
approach of detecting failures used by the majority of P2P
networks. We then describe our Binary search based approach
that is able to accurately and efficiently find the timeout value
of NAT devices.

A. Standard Keep-alive Algorithm

The Standard Keep-Alive (SKA) algorithm is widely used to
detect the departure of ungraceful nodes and prevent connec-
tions being removed by NAT devices. A node assumes an entry
in it’s routing table to be online in the network for a duration
of time defined by the keep-alive period k. Therefore, the
time that a connection between two nodes can remain inactive
is defined by the keep-alive period. If no message has been
exchanged within a keep-alive period, keep-alive messages are
exchanged to ensure the corresponding node is still online.

In a network with N nodes with an average degree D there
are (N · D) · 2 keep-alive messages sent and subsequently
acknowledged every k seconds. Keep-alive messages are also
small, around 40 bytes which is equivalent to header of a IP
packet containing a TCP segment of size 0. If a node leaves
the network it does not respond to keep-alive messages, these
unacknowledged messages are typically re-sent multiple times
at short intervals to minimise the risk of false positives where
keep-alive messages have been somehow lost. As ungraceful



3

(a) A node’s session time Si = di = ai, where Di is
the failure detection delay period

(b) The mean and median failure detection delay period
is k/2

Fig. 1. The standard keep-alive algorithm

nodes do not inform incoming connections upon leaving a
network, these neighbours are left ignorant to changes in
network topology.

Figure 1a as shown in [7] illustrates node i arriving in the
network at time ai and departing the network at time di. A
node’s session time Si, the amount of time node i spends
in the network is given by Si = di − ai. At time tv node
v connects to node i and begins sending periodic keep-alive
messages with an interval of k seconds. At time di node i
departs the network ungracefully, node v does not learn of
this departure until the subsequent keep-alive that is sent but
goes unacknowledged. As a result there is period Di during
which node v falsely believes that node i is still present within
the network. We call this period the failure detection delay.

The size of the failure detection delay period is directly
proportional to the keep-alive period k. As node’s can connect
to one another at at any point during a nodes session time
with equal probability, departure time di of neighbours falls
uniformly within any single keep-alive interval. Therefore the
mean and median failure detection delay between a node leav-
ing a network and subsequently being detected is k/2 using a
periodic keep-alive mechanism as illustrated in Figure 1b.

The larger the failure detection delay the longer a node
incorrectly considers a entry in it’s routing table to be present
within the network. While application developers may want to
reduce the failure detection delay as much as possible, using
the SKA approach this can only be done at the cost of sending
more keep-alive messages. While other techniques [7], [8], [9],
[10] improve upon the performance of the SKA approach the
fundamental trade-off remains the same; extending the keep-
alive period increases the incurred failure detection delay while
reducing the cost in terms of bandwidth.

B. Binary Search

To improve on the iGlance algorithm that doubles and
halves the test-interval we implement a Binary Search algo-
rithm. As in iGlance the Binary search approach creates a
live and a test connection, and updates the klive and ktest

intervals through positive and negative feedback. The binary
search approach locates the NAT timeout period t by finding
upper and lower bounds of t and selecting the middle value
of these two points to progressively divide the search space in
half.

In our context, the test connection sets a keep-alive period of
ktest seconds. Each time the corresponding node successfully
responds through the test connection, we learn the NAT
timeout period t is greater than ktest. Accordingly we set

klive and min equal to current value of ktest. To begin with
there currently is no upper bound on t, so the interval ktest

is doubled. When the ktest interval exceeds t the NAT device
removes the connection and the keep-alive message eventually
fails, at this point we know t is lower than the current value
of ktest so the upper bound max is set to ktest.

At this point the NAT timeout interval t must between
lower and upper bounds min and max respectively, the binary
search approach is to set ktest to the the middle of these two
points min+max

2 . If the keep-alive message is acknowledged
after ktest seconds min and klive are updated, otherwise
the test connection has timed out and upper bound max is
updated. Finally ktest is set to min+max

2 and the process is
repeated. This implementation of Binary search should find a
NAT timeout period t in at most 2[log2t] steps.

C. Gossiping Failures

To further reduce the failure detection delay we augmented
all algorithms with a simple gossip mechanism. This mech-
anism shares information regarding node failures with their
mutual neighbours.

Each time that node X sends a probe to node Y it also learns
of all Y ’s neighbours n(Y ). If node Y subsequently does not
return node X’s keep-alive messages, X then informs the other
neighbours n(Y ) of this failure. These mutual neighbours
then immediately probe Y themselves to ensure news of the
failure is correct. Although n(Y ) may be outdated, nodes
that are not informed of Y ’s failure will eventually detect it
themselves. Further examples of alternative and more complex
sharing-based, gossip-based and flooding-based mechanisms
are evaluated in [9], [10].

While gossip-based and similar mechanisms reduce the
failure detection delay this comes at the cost of increased
control overhead. Additional messages are required to in-
form mutual neighbours, who themselves check a node has
failed. However as previous studies have shown this additional
overhead is relatively small as the majority of maintenance
consists of keep-alive messages with gossip messages only
being sent when a failure is detected. The next section details
our experimental methodology which we use to analyse and
compare the algorithms described above.

IV. EXPERIMENTAL METHODOLOGY

To evaluate and compare the algorithms described above our
simulations are based on a publicly available [11] BitTorrent
tracker log. Our simulations are trace-driven based on a portion
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of the five month logged period of the RedHat9 BitTorrent
network.

New nodes join a BitTorrent network by connecting to
the random subset of nodes already present in the network
provided by a BitTorrent tracker. Periodically nodes update
their status and, if they leave gracefully, inform the tracker
upon departing the network. By automatically logging all
this data, BitTorrent trackers provide us with the arrival and
departure times of peers to the nearest second. Enabling
us to model the complex process of churn accurately and
realistically.

In some respects compared to crawler based techniques that
actively probe a subset of nodes within a network at regular
intervals, BitTorrent tracker logs are a more accurate source
of network data. As crawlers progressively probe the network;
increasing the number of nodes a crawler incorporates also
increases the interval between successive probes, this interval
currently ranges between four and thirty minutes [12], [13],
[14]. Crawler based techniques cannot accurately capture
session times smaller than the granularity of the network
trace. While BitTorrent trackers passively monitor the network,
registering to the nearest second nodes that contact it upon
joining, periodically and upon departure. Of course the nodes
that do not contact the tracker cannot be logged in a passive
fashion.

The arrival and departure time of any graceful node can be
accurately determined by processing a tracker log. Although
the departure time of ungraceful nodes are not listed within
tracker logs, as all nodes periodically update their progress
at thirty minute intervals we can assume they leave at most
thirty minutes after their last update. Accordingly we can add
a uniformly random time of at most thirty minutes to the
last progress update of ungraceful nodes to determine their
simulated departure time. Furthermore, all our experiments
utilise a fail-stop model in which all nodes graceful and
ungraceful do not inform their neighbours upon departing the
network.

In this paper we simulate an unstructured network, trace-
driven upon the RedHat9 BitTorrent tracker log data. Whilst
online each simulated node creates and maintains a fixed
number of connections D with other existing nodes selected
at random, we experiment with a range of node degree values
setting D = 20, 30 and 40. As we only simulate maintenance
messages we believe this work is general enough to be applied
to any type of P2P network overlay regardless of it’s structure.

In addition we also simulation the expiration of connections
via NAT device timeouts. Each node x has a individual NAT
timeout period t, if any connection to x is idle for longer than
t seconds that connection is expired. In order to accurately
simulated the NAT timeout values we generate our simulated
timeout values according to [15] with a minimum imposed
timeout value of two minutes. Guha and Francis in [15], find
that only 35.6% of NAT devices keep an idle connection
open for at least two hours. Furthermore, 21.8% of NATs
expire idle connections after less than fifteen minutes, with
the remaining 42.6% of NATs having a timeout period in
somewhere between two hours and fifteen minutes. While
connections in a unstructured network are unidirectional, data

may flow both ways as a result we use expire a connection
according to the lower of the two timeout values of two
connected nodes.

For each experiment the simulation begins cold, i.e without
any peers. The first twelve hours of the network then act as
a warm-up period as nodes populate and leave the network
according the events given by the trace. Once the warm-
up period is finished each node then creates D connections
with existing nodes and we report the maintenance of these
connections over the subsequent twelve simulated hours. Each
experiment is repeated five times with the results averaged over
these runs and standard deviation shown in the next section.

V. RESULTS

We evaluate each mechanism based upon two main criteria:
• Cost: The average bandwidth consumed per node per

second online. Formally the cost C is equal to (s+a)·p
T ;

where s and a are the number of keep-alive messages
sent and acknowledged respectively, p is the size of a
keep-alive message and T the sum of all node session
times.

• Failure detection delay: The mean and median time
that elapses between a failure occurring and subsequently
being detected.

Cost and mean failure detection delay have been used as
performance metrics other evaluations of failure detection
algorithms including [7], [8], [10].

In this paper we compare the standard keep-alive algorithm
(SKA), iGlance algorithm, Binary search algorithm against
one another using the above metrics. Furthermore we also
implement an imaginary ’optimal’ algorithm called the Omni
approach that has global knowledge of the timeout interval of
NAT devices and matches the keep-alive period to that value.
As we assume NAT devices do not know their own timeout
period, clearly the global knowledge possessed by the Omni
algorithm would be impossible to obtain. The purpose of the
Omni algorithm is to establish the baseline minimum amount
of traffic possible by extending the keep-alive period as far as
possible without expiring the connection.

Figure 2, shows Binary search approach reduces the cost of
maintenance to approximately the same level as the standard
periodic algorithm with a keep-alive interval of k = 960.
Despite the additional overhead incurred by using two con-
nections per neighbour, the average number of keep-alive
messages sent and received is around five times lower than
the default parameter of BitTorrent [1]. By adapting to NAT
timeout values the live connection is able to use increasingly
large and safe keep-alive intervals. As the live connection
always uses the largest known safe keep-alive interval there is
no risk of a NAT device expiring the connection before it is
needed.

Figure 3a shows the iGlance algorithm by only doubling
and halving the ktest interval it cannot accurately approximate
many NAT timeout values and cannot achieve the lower cost
values of the more accurate Binary Search approach.

Figure 3b and 3c shows there is a inherent tradeoff, by
extending the keep-alive intervals we unavoidably increase
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(a) (b)

Fig. 2. The performance of the standard keep-alive (SKA) algorithm in terms of cost and mean failure detection delay.

(a) (b) (c)

Fig. 3. Comparison of the iGlance, Binary Search and Omni approaches in terms of cost, mean and median failure detection delay.

the average failure detection delay. The adaptive iGlance and
Binary search approaches only consideration is to find the NAT
timeout values of nodes present in the network, as these values
may be as large as two hours the resulting failure detection
delay is also large. Periodic keep-alive algorithms generally set
the keep-alive interval to be lower than the majority of NAT
device’s timeout values as a consequently the average failure
detection delay is also very low. By finding these timeout
values the iGlance, Binary Search and Omni algorithms incur
large failure detection delays when nodes eventually leave
the network. Figure 3 shows that the Omni approach is only
optimal in terms of minimising bandwidth. By matching the
timeout values immediately the Omni approach incurs the
largest failure detection delays as node must wait until the
end of the next keep-alive period to detect a failure.

While the mean and median detection delay are equivalent
for the periodic approach, the the median delay is significantly
lower for the adaptive algorithms than mean failure detection
delay incurred. This is due to some timeout values being low
resulting in a short keep-alive interval being found and nodes
failing before the while the live connection is using relatively
small keep-alive intervals. While application designers want-
ing to create low overhead networks may find these delays
acceptable, designers of high churn networks should be wary
of incurring such high failure detection delays as undetected
failed neighbours could potentially occupy routing table entries

for long periods of time.

However, it should be highlighted that our experiments
assume a fail-stop model, meaning all nodes leave the network
ungracefully. In real networks the majority of nodes will leave
gracefully, informing their neighbours upon departure and in-
curring no failure detection delay as a result. Our experiments
therefore simulate the worst-case scenario maximising the
incurred failure detection delay.

To rectify the unreasonably large failure detection delays
incurred, further experiments shown in Figure 4, show a
simple gossip mechanism as discussed in [9], [10] can be
used to significantly reduce the mean and median failure
detection delay of all the algorithms with little additional
bandwidth cost. As the degree of node is increased the more
mutual neighbours nodes share further reducing the incurred
failure detection delay. However gossip mechanisms are not
designed to prevent connections expiring, only to inform
mutual neighbours of the departure of neighboring nodes. As a
result, the adaptive algorithms with gossip prevent connections
becoming idle and keep the mean failure detection delay
acceptably low. Of course the standard periodic approach can
also be augmented with gossip further reducing the average
failure detection delay, as shown in [10], but cannot ensure
connections do not expire.
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(a) (b) (c)

Fig. 4. Comparison of the iGlance, Binary Search and Omni approaches with Gossip in terms of cost, mean and median failure detection delay.

VI. FUTURE WORK

In the future, we would like to implement the algorithms
proposed in this paper to a real system. While the simulated
results of adaptive approaches appear promising how they
behave in real network may highlight further areas of interest.

Furthermore, we would like to augment the binary search
algorithm by adding collaborative and randomized features. As
many nodes may be connected to a single node x, the mutual
neighbours of x can work together to find x’s NAT timeout
value. One possible drawback of a collaborative feature is
neighbours could experiment with the same ktest values in
parallel, to avoid this we could also implement a version of
the collaborative algorithm that randomises the ktest interval
uniformly within the range min and max.

We would also like to extend our previous work presented
in [7] to improve failure detection within structured networks.
As structured networks must maintain the topology of the
overlay they present a different constraints to the unstructured
networks examined previously. Furthermore we would like to
investigate more robust ways of determining the current uptime
of a node.

VII. CONCLUSION

This paper presented a simple yet novel algorithm based
upon Binary Search that adapts itself to the timeout period of
NAT devices to ensure the connection for live traffic does not
become idle. When compared to the existing iGlance algorithm
and the widely deployed standard periodic approach the Binary
Search approach reduces the cost of maintenance incurred by
nodes significantly without live connections expiring. In doing
so, the failure detection delay is significantly increased as
keep-alive intervals match the potentially large timeout values.
However by augmenting these algorithms with a simple gossip
gossip mechanism we showed that the failure detection delay
can be reduced to more acceptable levels.

Overall, this paper has shown it is possible to improve
performance, in terms of bandwidth spent on maintenance, by
adapting to the timeout value of NAT devices. However tuning
keep-alive intervals presents an inherent trade-off between the
bandwidth spent and the incurred failure detection delay. All
our of the adaptive algorithms presented here reduce the cost

of maintenance at the expense of increased failure detection
delays. However, by adapting to NAT timeout values these
algorithms ensure keep-alive messages are only sent until
strictly necessary and no live connections are expired due
to idleness. In conclusion this paper has shown that adaptive
mechanisms and out-of-bound connections can be successfully
used to reduce the cost of keep-alive messages and there is
significant potential for future work.
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