
Efficient Transport Layer and Socket API for ICN
Mauro Sardara
Cisco Systems Inc.

msardara@cisco.com

Luca Muscariello
Cisco Systems Inc.

lumuscar@cisco.com

Alberto Compagno
Cisco Systems Inc.

acompagn@cisco.com

ABSTRACT
In this demonstration, we showcase a transport layer and socket
API [10] that can be used in several ICN architectures such as
NDN, CCN and hICN [8]. The current design follows the successful
BSD socket approach: a simple API that can be easily inserted in
current applications and used to develop novel ones. In the PoC, we
compare the performance of some of the transport services provided
by both our transport layer and the today’s transport layer: reliable
communication, data segmentation and reassembly, data integrity.
Moreover, we show the benefits of adopting our transport layer in
existing application in terms of CPU load reduction and a lower
memory consumption.

CCS CONCEPTS
• Networks → Programming interfaces; Network experimen-
tation;

KEYWORDS
ICN, Transport Services, Socket API
ACM Reference Format:
Mauro Sardara, Luca Muscariello, and Alberto Compagno. 2018. Efficient
Transport Layer and Socket API for ICN. In 5th ACMConference on Information-
Centric Networking (ICN ’18), September 21–23, 2018, Boston, MA, USA. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3267955.3269013

1 INTRODUCTION
Since the release of BSD Socket API, internet applications rely on
transport services to inter-operate with the network and move data
across the Internet. The key to success of such API is its simplicity:
developers can send/receive data to/from the network as if they
were programming sequential-access files applications. Moreover,
by setting the corresponding socket options, developers can exploit
the required transport service (e.g., reliable/unreliable communi-
cation, flow control, congestion avoidance, data segmentation and
reassembly, etc) implemented by a transport protocol that hides
the complexity to the application.

Information Centric Networking (ICN) is a relatively novel net-
work architecture that enables a simplified and more efficient user-
to-content communication. While a considerable amount of work
has been done in designing and developing the network layer with
several proposed architectures (NDN, CICN, hICN), a smaller effort
has been done in designing and evaluating the transport layer. Most

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICN ’18, September 21–23, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5959-7/18/09.
https://doi.org/10.1145/3267955.3269013

of the work on transport layer for ICN has focused on receiver-
driver congestion control protocols (surveyed in [9]) but only few
target the design of a socket API [4, 7]. Both of [4, 7] define a new
communication abstraction model based on the consumer/producer
principle of ICN. While the work in [4] adapts the BSD Socket API
definition to the consumer/producer paradigm, the work in [7] de-
fines a new set of API, specific to ICN. Unfortunately, none of them
provide an evaluation of their implementation and a comparison
with today’s transport layer.

In this demonstration, we present a transport layer with an API
reflecting the same simplicity of the BSD socket API, that provides
a wide set of transport services: data-oriented communication, data
segmentation and reassembly, traffic flow, congestion control, syn-
chronous and asynchronous data publication, data integrity and
origin authentication. Considering the video distribution use case,
we show the performance of our implementation, able to reach an
application goodput of 5.79Gbps, we compare our reliable transport
protocol with TCP and finally we show the benefits brought by our
transport at application layer.

2 TRANSPORT SERVICES
The services and the API offered by the transport layer to applica-
tions depend on their communication model: the content producer
publishes data under a given name, by segmenting, naming and au-
thenticating them with its identity. On the other hand the consumer
fetches the data packets, optionally using a flow control algorithm,
verifies their origin and reassembles them. Being the operations
of consumers and producers disjointed, we identify two kind of
communication sockets, each with its specific transport services
and API.

recv 
from()

Data Input 
Buffer

send 
Packet()

Data Packet

recv 
Packet()

Data Packet
Signature + 

Integrity

ADU

ReassemblyDatagram/Stream 
Data Retrieval 

send 
msg()

Security 
Policies

Interest

Interest

Data Packet

Data 
Packet

Drop

Interest

In
te
re
st

D
at

a 
Pa

ck
et

Figure 1: Consumer socket

https://doi.org/10.1145/3267955.3269013
https://doi.org/10.1145/3267955.3269013


ICN ’18, September 21–23, 2018, Boston, MA, USA M. Sardara et al.

recv 
msg()

ADU

send 
msg() 

Interest 

Interest Input 
Buffer

Data Packet 

Interest

Data Packet Output Buffer

send 
Packet()

Interest

recv 
Packet()

D
ata Packet 

Pending 
Interests

Data 
Packet 

Segmentation
+ Naming

Data Packet

Data 
Packet

Integrity +
Authentication

Figure 2: Producer socket

The consumer socket is in charge of retrieving application data
from multiple potential producers whereas the producer socket is in
charge of publishing application data units (ADUs) for multiple po-
tential consumers. This design allows applications to exchange data
in a multi-point to multi-point manner, overcoming the limitations
of connection-oriented transports such as TCP.

In this demonstration, the transport services showcased are (1)
synchronous ADU segmentation and naming, (2) ADU fetching and
reassembly, (3) congestion and flow control, (4) integrity, authenti-
cation and data origin verification. Fig. 1 and 2 show how services
operate inside the two sockets.

Transport services are exposed to applications using the socket
interface extensions for IPv6 [5]: application data units can be
published using the sendmsg system call with a producer socket and
can be retrieved using the recvfrom system call with a consumer
socket.

3 DEMONSTRATION
The demonstration can be decomposed in three parts: (1) we show
how to write new and integrate existing applications using our
socket API; then (2) we compare our implementation with TCP,
underlying if and how ICN specific services like authentication and
integrity affect the communication; finally (3) we show what bene-
fits an ICN transport can bring to the application. For the first two
parts we use a simple topology with two hosts (consumer/producer
in ICN, server/client in IP/TCP), connected through a 10Gb/s link.
In the third part, we deploy a more complex topology in which
a group of video clients is connected to an Apache Traffic Server
(ATS) [1] through a 10Gb/s link. ATS is configured as an HTTP
reverse proxy and a Web cache. As origin server we use an nginx
[2] server live-feeded by a RTMP stream generated by the Open
Broadcaster Software (OBS) [3]. We stream 48 channels, with 2
second segments. To compare our ICN transport with TCP, we con-
nect the ATS plugin to our ICN sockets and we create one producer
socket per channel. In all the three parts, we use our Hybrid ICN
(hICN) implementation that brings NDN/CCN into IPv6 [8].

The demonstration showcases the following features of the ICN
transport:
1) Easiness of integration inside applications: The usage of

an API as simple as the BSD socket API aims to facilitate the

integration of ICN transport services into applications and al-
lows to decouple the application logic from the specific ICN
implementation (NDN, CICN, hICN).

2) High speeduserspace implementation:We demonstrate how
our ICN transport, based on VPP [6] and DPDK [11], is able to
operate at high speed exploiting zero-copy and userspace packet
processing.

3) Integrity and Authentication as a transport built-in: Sign-
ing and verifying packets have a significant impact on the overall
transport performance, both in terms of application goodput
and latency. This overhead can be reduced by offloading them to
dedicated hardware. The PoC aims to show how much a secure
transport can affect the communication between consumers and
producers.

4) Multicast and Server Load Reduction: A fundamental dif-
ference between a TCP and an ICN socket is the fact that a
ICN socket can serve/retrieve data to/from multiple destina-
tions/sources. This allows to significantly reduce the server load,
which can produce data once, instead of sending it to each client
in unicast. Therefore, consumers’ requests can be serviced by the
transport itself once the data is made available after production.

4 CONCLUSION
Through this demonstration, we illustrate what benefits an ICN
transport layer can provide to today’s applications and developers,
as well as how the basic security features of ICN affect the com-
munication among the network entities in terms of goodput and
latency.

While the socket API allows easy extension and integration in-
side today’s applications and the software implementation features
high speed packet processing, the cryptographic operations still
have a significant impact on the transport performance. Our soft-
ware implementation is still feasible for a large set of applications,
but hardware acceleration is required for a real ICN deployment.

REFERENCES
[1] Apache Traffic Server. http://trafficserver.apache.org/.
[2] nginx. https://nginx.org/en/.
[3] Open Broadcaster Software (OBS). https://obsproject.com/.
[4] M. Gallo et al. 2014. NaNET: Socket API and Protocol Stack for Process-to-content

Network Communication. In Proc. of the 1st ACM SIGCOMM ICNConference (ACM
ICN’14).

[5] R.E. Gilligan et al. 2003. Basic Socket Interface Extensions for IPv6. Technical
Report 3493. https://rfc-editor.org/rfc/rfc3493.txt

[6] Linux Foundation FD.io. Vector Packet Processing. https://fd.io.
[7] I. Moiseenko et al. 2015. Consumer / Producer Communication with Application

Level Framing in Named Data Networking. In Proc. of the 2nd ACM SIGCOMM
ICN Conference (ACM ICN’15).

[8] L. Muscariello et al. 2018. Hybrid Information-Centric Networking. Internet-Draft
draft-muscariello-intarea-hicn-00. Internet Engineering Task Force. Work in
Progress.

[9] Y. Ren et al. 2016. Congestion Control in Named Data Networking - A Survey.
Comput. Commun. 86, C (Jul 2016), 1–11.

[10] M. Sardara et al. 2018. A Transport Layer and Socket API for (h)ICN: Design, Im-
plementation and Performance Analysis. In Proceedings of the 5th ACMConference
on Information-Centric Networking (ACM ICN’18).

[11] The Linux Foundation. Data Plane Development Kit. https://dpdk.org.

http://trafficserver.apache.org/
https://nginx.org/en/
https://obsproject.com/
https://rfc-editor.org/rfc/rfc3493.txt

	Abstract
	1 Introduction
	2 Transport Services
	3 Demonstration
	4 Conclusion
	References

