
A Transport Layer and Socket API for (h)ICN: Design,
Implementation and Performance Analysis

Mauro Sardara
Cisco Systems Inc.

msardara@cisco.com

Luca Muscariello
Cisco Systems Inc.

lumuscar@cisco.com

Alberto Compagno
Cisco Systems Inc.

acompagn@cisco.com

ABSTRACT
In this paper we present the design of a transport layer and socket
API that can be used in several ICN architectures such as NDN,
CCN and hICN. The current design makes it possible to expose an
API that is simple to insert in current applications and easy to use to
develop novel ones. The proliferation of connected applications for
very different use cases and services with wide spectrum of require-
ments suggests that several transport services will coexist in the
Internet. This is just about to happen with QUIC, MPTCP, LEDBAT
as the most notable ones but is expected to grow and diversify with
the advent of applications for 5G, IoT, MEC with heterogeneous
connectivity. The advantages of ICN have to be measurable from
the application, end-services and in the network, with relevant
key performance indicators. We have implemented an high speed
transport stack with most of the designed features that we present
in this paper with extensive experiments and benchmarks to show
the scalability of the current systems in different use cases.

CCS CONCEPTS
• Networks → Programming interfaces; Network experimen-
tation;

KEYWORDS
ICN, Transport Services, Socket API

ACM Reference Format:
Mauro Sardara, LucaMuscariello, and Alberto Compagno. 2018. A Transport
Layer and Socket API for (h)ICN: Design, Implementation and Performance
Analysis . In ICN ’18: 5th ACM Conference on Information-Centric Networking
(ICN ’18), September 21–23, 2018, Boston, MA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3267955.3267972

1 INTRODUCTION
Information-Centric Networking (ICN) is a network paradigm that
enables location independent and connectionless communications.
In this paper, by using ICN, we refer to the NDN/CCN ([33], [34])
architectures but also to the more recent Hybrid ICN [36] that
implements NDN/CCN into IPv6. We use the symbol (h)ICN to
indicate all of these architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICN ’18, September 21–23, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5959-7/18/09. . . $15.00
https://doi.org/10.1145/3267955.3267972

There has been a considerable amount of work on developing
novel applications on top of (h)ICN. However, there has been little
effort into developing an intermediate stack, namely the session and
transport layers as well as an API that is feature reach and simple
at the same time. The network stack as implemented in current
operating systems, exposes Internet sockets (INET) using the BSD
socket API for all *NIX OS or Windows Socket API for Windows
OS. They are all very similar and application developers are used to
deal with this kind of API to develop networked applications. There
has been a remarkable amount of work to develop new transport
services in the Internet in order to meet different applications’
requirements, such as LEDBAT, QUIC ([25]), MPTCP. In the future,
it is likely that novel transport services will be developed to respond
to upcoming needs and to adapt to different environments, namely
mobile networks, delay tolerant networks, multi-homed access use
cases, just to cite some examples. The advent of new transport
services are also expected to proliferate to serve the development
of new applications for the next decades. In this case, developing
and defining an API that can be inserted in applications in a simple
manner, with extend-able features, is a mandatory requirement
for the success of new transport services. The current IETF WG
TAPS [37] is the most notable effort in this direction and also the
work done in the NEAT project [9].

(h)ICN is not an exception, and its proliferation also depends
on the definition and implementation of simple and an easy to use
session and transport layer. Currently, (h)ICN lacks of this definition
as well as the implementation of a socket API that can facilitate
its insertion in existing applications as well as the development of
new ones. In this paper, we describe one such layer that is based
on the consumer/producer communication abstraction model and
we show how it gracefully fits into a comprehensive middle-ware
between applications and the (h)ICN layer. Moreover, we discuss
several transport services and we provide an implementation for
them. We compare our implementation with the corresponding
services available in TCP and UDP and we show that we achieve
comparable performace in terms of goodput.

The paper is organized as follows. Section 2 gives an overview
of the ICN namespaces and their relation with the transport and
network layers. Section 3 describes the overall architecture with
assumptions and constraints; Section 4 presents the transport layer
as well as the socket API. Section 5 describes the details of an
high speed implementation of the proposed transport stack that is
benchmarked and analyzed in Section 6 and 7. Section 8 reports
related work on the topic while Section 9 concludes the work.

https://doi.org/10.1145/3267955.3267972
https://doi.org/10.1145/3267955.3267972

ICN ’18, September 21–23, 2018, Boston, MA, USA Mauro Sardara, Luca Muscariello, and Alberto Compagno

2 NAMESPACES IN (H)ICN
In NDN/CCN, it is often assumed that application names are the
same names used by the routing plane in the form of routable pre-
fixes. In this section, we argue that application names and network
names should not coincide in order to provide a greater flexibility
to organize data at application layer, while maintaining routing
scalability, network domains separation and better supporting mo-
bility.

Today applications manage data using different kind of names-
paces that are used for the purpose and functioning of the specific
application itself. For instance a web server typically makes data
available using a URL which embeds the hostname of the server and
defines a locator to determine where the data can be retrieved. The
data itself inside the server is then organized using a namespace
that is inherited by the local file systems. Domain names are man-
aged by an authority that maintains a registry of allocated names
to registrants.

Other collections of data are organized using URN for objects
(RFC 3061 [30]), ISSN (RFC 3043 [31]), DOI (ISO 26324 [18]) and
many mores. It is convenient to organize data using a standardized
namespace as it allows simple migration of the data, interoper-
ability and integration of different applications among themselves.
However, this is not always the case, and most of the time each
application develops namespaces autonomously.

The same level of flexibility and customization can be hardly
achieved with network names, whose definition usually follows
some strict rules and their allocation is handled by the network
administrator (who is usually unaware of the applications running
at the end-host devices). Additionally, using the same names at
network and application layers also issues severe concerns to the
routing system. In this case names (prefixes usually) used by appli-
cations would be distributed in the routing systems in order to set
the forwarding plane. The variety of namespaces used by different
applications would make complicated to exploit aggregation to
maintain FIB small in the routers, thus affecting routing scalability.
Lastly, the data producer would have to attest the ownership of
the prefix to the routing system and the different network domains
exchanges prefixes to assure reachability.

In order to avoid the issues raised above, an efficient solution is
multiplex/demultiplex application names into network names. We
consider the case of hICN, in which routable name prefixes are IPv6
prefixes and follow the usual rules on IPv6 routing including prefix
attestation. The way name prefixes are assigned to a data producer
is similar to what would happen in LISP ([16]) when end host iden-
tifiers (EID) are assigned. However in LISP an EID is not routable
and goes into a mapping system for translation in a routable locator.
EID and routable addresses both belong to an entity that acquires
them from a resource pool managed by an external entity. In this
respect operations of name mapping (between application and net-
work layers), name translations (mobility, roaming) will need to
be further developed and implemented to make the whole system
scale and inter-operate in different environments.

The mapping between network and application namespaces has
a direct influence on the ICN data aggregation, routing scalability
and data transmission. Application data moves from one location
to another by means of data segmentation that has to fit into the

minimummaximum transfer unit across the link traversed from the
source to the destination(s). If the data does not fit into the MTU of
a link it is either discarded or reassembled before retransmission.
Instead, the network namespace is data agnostic.

In NDN/CCN and hICN data packets are directly indexed using
a hierarchical name. The hierarchy allows to organize application
level data inside name prefixes, but also to better scale routing by
name (aggregation) and to define lower level indexes as segment
identifiers. One of the compelling usage of (h)ICN architectures is to
reduce redundant transmissions because multiple requests for the
same data can be satisfied by a single transmission. Immutability of
the data that is associated to a given name is a strong requirement
at least for the lifetime of a transport session, otherwise reassembly
of the data at consumers would not complete successfully.

In NDN/CCN, segmentation suffixes including additional meta-
data such as versioning are included as additional TLVs as name
components. In hICN [36] segmentation information is included
in the L4 header: name suffix, lifetime etc. Fragmentation poses
issues, as in IP, as immutability is not preserved and data shar-
ing is suboptimal (some solutions are proposed in [35], [20]). The
risk is that, as in IP today, fragmentation makes multi-path trans-
port difficult to optimize, as the characteristics of a network path
can influence the way data is segmented in the namespace. For
(h)ICN this can be a significant limitation. Hop-by-hop reassembly
of fragments seems the best solution at a non negligible cost. More-
over, end-points can charge the network with additional cost for
segmentation/reassembly operations.

MTU path discovery protocols can eliminate this cost if used by
the end-points when possible. The design of this kind of protocols
needs additional work for (h)ICN as a key requirement is to preserve
location independence and multi-path communication efficient.

In summary, data namespaces in (h)ICN have an impact on the
full stack: from the application, through transport and down to the
single data packet in case of segmentation or fragmentation. Each
layer has different objectives and constraints. Each layer manages
resources of different capacities implying trade offs while multi-
plexing/demultiplexing name data from one layer to another. Some
of these trade offs have been discussed in this section, others will
be described in the paper in detail concerning specific transport
layer functions. In this paper we consider the transport layer that
has adjacencies with application and network layers and has a key
role in the overall architecture.

3 ARCHITECTURE
In this section, we present the network layer requirements we
identified to design our socket API and transport Services. Hybrid
ICN (hICN) [36] is an examples of (h)ICN implementations that
brings information-networking functionalities into IPv6, without
creating overlays with a new packet format as an additional encap-
sulation. hICN reflects all the key ICN properties implemented on
the CCN/NDN architectures, such as: named data, dynamic named-
based forwarding, data-centric security, receiver-driven connec-
tionless transport. The major design difference between hICN and
NDN/CCN resides on the data names which have a fixed size and
are mapped into IP6 addresses. Instead, interest and data packets

A Transport Layer and Socket API for (h)ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

forwarding follows the same rules defined in NDN/CCN. Additional
details can be found in [36].

The transport layer that we present in this paper sits on top
of a network layer that provides the semantics of the NDN/CCN
architecture. The services provided by the network layer protocols
to the upper layers are characterized by request/reply semantics,
meaning that data is transmitted only upon reception of the corre-
sponding request. Each data is transmitted in a Data Packet that is
unambiguously identified by a hierarchical name. Such hierarchical
name is used at the network and transport layer to realize location
independent name-based forwarding, as well as multiplexing and
demultiplexing of communication flows, data segmentation and
reassembly. We assume that the network layer does not perform
fragmentation, i.e. the L3 PDU fits into link-layer maximum transfer
unit (MTU). For this reason, we assume as well that the transport
layer relies on a path MTU discovery protocol (PMTUd). The more
general problem of designing a PMTUd mechanism that can be ef-
fective for multi-path and multi-homed end-points is an important
problem but it is out of scope for this paper, where simple naive
approaches are adopted.

Moreover, we assume that application level data is associated to
a namespace that applications use to organize, uniquely identify
and securely exchanged each data. We believe, and encourage, that
application level namespaces and names differs from the (h)ICN
network layer prefixes and names. This allows ICN architectures
with a finite pool of network names (such as hICN) to deal with the
several orders of magnitude bigger application level data that can
be permanently addressed in an end-host. Additionally, decoupling
application-layer names from their network-layer counterparts pro-
vides several benefits in term of packet processing and security [21].
Translation between the application level names to the correspond-
ing network layer names is done in the transport layer. How the
translation between network and application name is done is left for
future work. In principle, this is not different to the current applica-
tion layer in today’s Internet which relies on session and transport
layers to conceal details of the networking semantics. Nevertheless
this is not entirely true in practice as many APIs do not properly
respect such basic principle. For instance gethostbyname() is one
of those infringements.

For a given name prefix, used to exchange an application data
unit, the name hierarchy is also used in the transport layer for
segmentation and reassembly operations using name suffixes as
part of the network namespace to unambiguously identify Data
Packets in the network and in a communication flows.

4 TRANSPORT SERVICES
In this section we present in details how communication sessions
are created, mapped into network namespaces and prefixes, and
for how long. We describe also how resources are allocated at the
end-points in order to serve the communications needs of the ap-
plications. We highlight that our socket API and transport services
run on every (h)ICN architecture, e.g., NDN/CCN as well as hICN.

4.1 End-points description
We identify two kinds of communication sockets each with a spe-
cific API: the producer and consumer sockets. These socket types

are designed to exchange data in a multi-point to multi-point man-
ner. The producer-consumer model is a well-known design concept
for multi-process synchronization where a shared memory is used
to let multiple consumers to retrieve the data that is made available
by producer processes into the same memory. In (h)ICN we have
the same concept that is applied to a network where memories are
distributed across the communication path. The first memory in the
path is the production buffer of the producer end-point that forges
Data Packets and copies them into a shared memory isolated into a
namespace. Consumer sockets can retrieve data from such memory
by using the (h)ICN network layer. The model just described is an
inter-process communication example (IPC) that requires data to
cross a communication network by using a transport protocol.

The way consumers and producers synchronize depends on ap-
plication requirements and the transport layer exposes a variety of
services: stream/datagram, reliable/unreliable, with or without la-
tency budgets etc. Independently of the specific requirements of the
applications, producer sockets always perform data segmentation
from the upper layer into Data Packets, as well as compute digital
signatures on the packet security envelop. This envelop can also be
computed across a group of packets, by including a cryptographic
hash of each packet into the transport manifest, and eventually
signing only such manifest. This is a socket option that can bring
significant performance improvement.

The consumer socket, on the other end, always performs re-
assembly of Data Packets, hash integrity verification and signature
verification. The usual assumption is that the producer socket uses
an authentic-able identity while using namespaces that it has been
assigned. The end-point must be able to manage the mapping of
her identity and the allocated namespace by issuing digital certifi-
cates about the mapping. The consumer end-point must retrieve
the associated certificate to perform the basic operations. It is out
of scope for this paper how to design and implement a scalable
system to perform such certificate operations.

Application

PF_INET6

TCP UDP

IPv6

PF_(h)ICN

(h)ICN

CONS
REL

Ethernet WiFi LTE Bluetooth WiGig MulteFire

PF_(h)ICN, name_prefix, socket_type,
protoPF_INET6, address, port, socket_type, proto

Socket Layer

CONS
UNREL

STREAM DGRAM
CONS PROD

PROD
REL

PROD
UNREL

Figure 1: Description of the network stack and socket API.

4.2 Network namespaces
The session layer takes care of sharing local resources among all
communication sessions such as consumer and producer sockets.
Any time an application wants to open a socket, the session layer al-
locates space from a memory pool and securely isolate it within the

ICN ’18, September 21–23, 2018, Boston, MA, USA Mauro Sardara, Luca Muscariello, and Alberto Compagno

valid namespace. Both producer/consumer sockets are successfully
instantiated to match against a valid prefix that must be available
in the local FIB. Communication flows are multiplexed into the
network layer using the namespace itself and do not require the
usage of L4 ports as in TCP/IP. The new session is multiplexed to
the network stack by registering the new session as a unidirectional
application face. FIB entries have to be configured accordingly in
case the new application face interconnects a producer or a con-
sumer socket. This kind of faces can be seen as shared memories
bound to a name prefix with read/write permissions.

The session is instantiated by passing socket types, options,
parameters and is released to the resource pool at closure, including
the used namespace. By consequence it implies that the certificate
used by a producer end-point is no longer valid and revocation of
the certificate must be enforced.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| MType |HashAlg|NextStr| Flags |NumberOfEntries|
+-+
| |
+ +
| |
+ Prefix +
| |
+ +
| |
+-+
| Name-suffix[1] |
+-+
| Hash Value[1] |
| |
+-+
. . .
+-+
| Name-suffix[NumberOfEntries - 1] |
+-+
| Hash Value[NumberOfEntries - 1] |
| |
+-+

Figure 2: Manifest encoding: compact encoding.

4.3 Socket API
The system calls of the socket API are based on the socket interface
extensions for IPv6 [23] and are shown in Figure 3.

Applications are supposed to call the socket() system call to
create descriptors representing a communication end-point, i.e., a
consumer or a producer. The domain AF_ICN defines the address
family and the socket type defines the communication semantics:
SOCK_CONS will create a consumer socket, SOCK_PROD will create
a producer socket. The consumer socket takes care of data recep-
tion, while the producer socket of data transmission. The protocol
parameter specifies the protocol used for the data retrieval and
the data production: CONS_REL/CONS_UNREL for reliable/unreliable
content retrieval and PROD_REL/PROD_UNREL for reliable/unreliable
data production. Section 5 clarifies the meaning of such parameter.

Both sockets bind to a socket address, who is initialized by spec-
ifying the address family AF_ICN and the name prefix (struct
sockaddr_icn). The name prefix enforces the namespace in which
a producer socket is allowed to publish data and a consumer socket
is allowed to request data.

The bind() system call takes care of setting up a local face to
the forwarder, which in the case of the producer also sets a FIB
entry (name_prefix, socket_id). The recvmsg() and the recvfrom()

Common API
int socket (int domain, int socket_type, int protocol);

int bind(int sockfd, struct sockaddr *addr,
socklen_t addrlen);

ssize_t sendmsg(int sockfd, const struct msghdr *msg,
int flags);

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

Consumer specific API
ssize_t recvfrom(int sockfd, void *buf, size_t len,

int flags, struct sockaddr *src_addr,
socklen_t *addrlen);

Producer specific API
ssize_t sendto(int sockfd, const void *buf, size_t len,

int flags, const struct sockaddr *dest_addr,
socklen_t addrlen);

Figure 3: System calls for socket initialization and binding
to a socket address, as well as for data reception and trans-
mission.

system calls are used by a consumer for retrieving a content, while
sendmsg() and sendto() are used by a producer for publishing
data and making it available for the consumers. Notice that the
consumer socket can just use the recvmsg() and recvfrom() as
they are the two system calls capable of specifying the name of the
content to be retrieved, and the producer socket can use only the
sendmsg() and the sendto() for publishing data under a certain
name. For both cases, the name used for pulling/publishing data
has to be in the range previously specified in the bind() system
call. The setsockopt() allows application to tune the available
socket options: its semantic with respect to the current sockets API
does not change. Some of the available options will be described in
Section 5.

The consumer socket can use the sendmsg() for sending arbi-
trary interests in a datagram fashion, while the producer socket can
call recvmsg() for receiving and processing requests from the con-
sumers. In particular, an application can use the sendmsg() system
call with a consumer socket to announce to a specific server (or
to a set of servers) that it is publishing data under a certain name.
In this way the remote server can retrieve the piece of content by
triggering a reverse pull induced by this signalization. The reverse
pull can be realized with the following steps: (1) the client endpoint
prepares a transport manifest with the information for pulling the
content; (2) by using sendmsg(), it sends an interest containing
the manifest to the server endpoint; the interest name is a special
prefix used by the server for receiving these control messages; (3)
the server receives the interest through the recvmsg() and gets the
manifest from it; (4) the manifest can be used by the server endpoint
for triggering the reverse pull, by exploiting the recvfrom().

We highlight that our socket API design is general and it does
not restrain developers to develop a variety of different applica-
tions patterns that differs from the content distribution applications
(in which a set of clients that retrieve content from one or mul-
tiple replicated servers). For example: collaboration applications
in which a number of users share data in a real-time fashion with

A Transport Layer and Socket API for (h)ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

each other can be implemented using one consumer socket and
one producer socket per user. The design of a specific transport
protocol, and its selection through the socket API, will guarantee
the communication-delay constraints required by the real-time
nature of the communication. And again, multi-write distributed
databases in which a number of entities write simultaneously to
many replica is an example of how to exploit the reverse pull in
order to write data to the distributed database. More in general,
the reverse pull mechanism plays a fundamental role in each appli-
cation patterns that do not directly fit with the request-reply ICN
communication and require a push mechanism, e.g., REST-based
and pub-sub applications.

5 IMPLEMENTATION
The (h)ICN transport service has been implemented in most of the
components in a C++ userspace library. It can be used to connect
to the CCNx 1.0 metis forwarder or the VPP [27] based forwarder,
as well as to the hICN forwarder. It has been also used with the
NDN forwarder daemon (NFD). The source code of two CCNx 1.0
forwarders is available in the CICN open source project [17], while
the implementation of the hICN forwarder is not yet available as
open source project. In the present paper experiments reported
below are made by using the hICN forwarder as it provides best
performance compared to the others. To connect an application
with the underlying forwarder, we developed a Forwarder Connector
which exposes a uniform interface for sending and receiving packets
to/from the network stack. The pipeline is reported in Fig. 5 and 6.
A more detailed description is presented in Section 5.2. Below we
report a short introduction to VPP which constitutes the packet
processor that allows to obtain scalable performance in software.

5.1 VPP: vector packet processor
VPP is a high-speed software based packet processor that provides
advanced data plane function in commercial off-the-shelf (COTS)
hardware. VPP design has two major pillars: (1) completely by-
passing the kernel in order to avoid the overhead associated with
kernel-level system calls, (2) maximize the number of instructions
per clock cycle (IPC). Kernel-bypass is achieved through low-level
building blocks, such as Netmap [28] and DPDK [42]. These mecha-
nisms provide Direct Memory Access (DMA) to the memory region
used by the NICs, therefore avoiding the need of the kernel to inter-
act with the underlying hardware. Maximization of IPC is achieved
carefully designing the VPP implementation and exploiting data
pre-fetching, multi-loop, function flattening and direct cache access.
In the following we briefly present the VPP architecture and the
design of our hICN plugin for VPP.

The VPP code is organized in a set of nodes, each implementing
specific functions (e.g., ip4 forwarding or fib lookup). There are
three types of nodes in VPP: namely internal, process and input.
Internal and input nodes form a forwarding graph determine the
processing paths each packet follows during it processing. Input
nodes interact directly with the NICs, reading packets from the rx
ring buffer and injecting them in the forwarding graph. Internal
nodes implement packet processing functions (e.g., packet forward-
ing, address rewrite, fib lookup) as well as they move packets to the
tx ring buffer in order to let the hardware to forward a packet. VPP

processes packets in a vectorized fashion: input nodes create a vector
of packets, which is moved from internal node to internal node by
the graph node dispatcher. Thus, every node executes its processing
function on the entire vector. This design allows to minimize cache
misses, to reduce the overhead of selecting the next node in the
graph, as well as to simplify pre-fetching [26]. Beside supporting
DPDK and Netmap compatible NICs, VPP provides other several
additional types of interfaces. Among all, memory-based interfaces
(in short memif) are designed to allow applications to send packets
to a local VPP forwarder. Memif interfaces are designed to be effi-
cient in order to forward several gigabits per second. Connectivity
between an application and a VPP forwarder is provided by a pair
of memif interfaces; one managed by VPP and the other by the ap-
plication. Such pair of interfaces are virtually connected through a
bidirectional link, thus letting packets to flow from one interface to
the other. The virtual link is implemented using two circular buffers
(one per each direction of the link) stored in a portion of virtual
memory shared between the VPP forwarder and the application.

5.1.1 hICN plugin. The hICN ([36]) forwarder is implemented as
a VPP plugin which adds six new nodes in the forwarding graph,
enabling two new forwarding sub-graphs: the interest and the data
forwarding pipeline and shown in Fig. 4.

PITCS-lookup

Hit-PIT Hit-CS

Ip-lookup

Strategy

Interface-tx

(a) Interest sub-graph

PITCS-lookup

Data-fwd

Interface-tx

Hit-PIT Hit-CS

Interface-tx

(b) Data sub-graph

Figure 4: hICN plugin for VPP

We exploit the VPP memif interface to implement the application
faces, i.e., hICN faces that forward traffic to/from local application.
In particular, we designed two different APIs that the transport
layer can use to connect to a consumer face and a producer face.
Both APIs instantiate a new memif interface, exposing the memif
shared memory to the transport layer. Additionally, the producer
face API also creates a new entry in the FIB in order to forward
Interest Packets to the producer socket.

5.2 Forwarder Connector
The forwarder connector is the software module in our transport
services that interacts with the underlying forwarders. We designed
two specific connectors, one for our hICN-VPP forwarder, and one
for the client forwarder. Both connectors expose the same north-
bound interface to the consumer socket and the producer socket.
In particular, the interface is composed of four APIs that the trans-
port layer can use to create a consumer/producer connector and to

ICN ’18, September 21–23, 2018, Boston, MA, USA Mauro Sardara, Luca Muscariello, and Alberto Compagno

send/receive packets: connectConsumer(), connectProducer(),
sendPacket (), recvPacket(). The purpose of the first two API
two is to create a (or connect to an existing) consumer or producer
application face in the hICN forwarder. The connectProducer ()
also takes care of setting a new FIB entry in order to allow the
forwarder to send Interest Packets to the producer socket itself.
The sendPacket() and recvPacket() are intended to send/receive
packets to/from the hICN forwarder once it is connected.

5.3 Consumer Socket

Application

Consumer
Socket

Forwarder Connector Interface

recv
from()

Data Input Buffer

(h)ICN Forwarder Connector VPP Forwarder Connector

send
Packet()

Data Packet

recv
Packet()

Read ADU

Pull Content

Data Packet

Signature + Integrity

ADU

ReassemblyDatagram/Stream
Data Retrieval

send
msg()

Send One Interest

Security Policies

Interest

Interest

Data Packet

Data Packet

Drop

Interest

In
te
re
st

D
at

a
Pa

ck
et

Figure 5: Consumer socket processing pipeline

Applications can instantiate a consumer socket for (1) retrieving
a specific content with a certain name (e.g. Http Client) or (2) di-
rectly sending an interest to retrieve one specific Data Packet (Ping,
RTP Client).

Figure 5 shows the internal processing pipeline of the socket and
points out the path followed by Interest and Data Packets during
the content retrieval. The content download is triggered by the
call to the recvfrom function: the application specifies the name
of the content to pull and some download options, such as the ac-
tions to perform in case of signature verification failure. After the
initial setup phase, the control is taken by the Data Retrieval pro-
tocol, specified at the socket creation with the socket system call
in the protocol parameter (CONS_REL, CONS_UNREL). The protocol
then starts generating Interest packets for retrieving the content
requested by the application. Before being forwarded to the for-
warder connector, the Security Policies block applies the policies
specified by the application as socket options: this includes for in-
stance signing the Interest or verifying that the Interest matches
all the application and socket constraints (e.g. the interest name
belongs to the prefix specified in the bind system call). If all the

requirements are satisfied, the Interest is passed to the forwarder
connector that takes care of delivering it to the next hICN node.

In the same manner, the forwarder connector takes care of de-
livering the Data Packets coming from the hICN forwarder to the
application. As soon as the Data Packet is received, it is stored
it in the Input Buffer and then passed to the Verification Routine
that performs the data-origin authentication check. As mentioned
in Section 4, this operation can be performed either by using a
transport manifest or verifying the signature of each Data Packet,
depending on how the producer decided to sign the content. If this
check fails, it means either the Data Packet has been corrupted or
has been produced by a malicious producer: in this case the security
policies set by the application will define if either dropping the Data
Packet and sending a new Interest, using it anyway or aborting
the download. If the data-origin authentication check succeeds, the
Data Packet is used for reassembling the application content. When
all the Data Packets are successfully reassembled and verified, the
consumer socket returns the content to the application.

Since the operation of verifying the data origin authentication
is expensive, as we show in Section 6, the flow control operations
performed by the Data Retrieval Protocol must be decoupled from
the operations performed by the Verification Routine, otherwise the
crypto operations would limit the rate of the flow control protocol.

5.4 Producer Socket

Application

Producer
Socket

Forwarder Connector Interface

recv
msg()

ADU

send
msg()

Interest

Interest Input Buffer
Data Packet

Interest

Data Packet Output Buffer

(h)ICN Forwarder Connector VPP Forwarder Connector

send
Packet()

Interest

recv
Packet()

Data Packet

Pending Interests

Application Content

Application Logic

cacheMiss
Signal

Data
Packet

Segmentation +
Naming

Data Packet

Data Packet
Integrity +

Authentication

Figure 6: Producer socket processing pipeline

The producer socket is responsible for producing Data Packets
and making them available for the consumers. Data Packets can be
published in two different fashions: (1) asynchronous production,
if the application publishes data without receiving any Interest (e.g.
file repository) or (2) synchronous production, if the application

A Transport Layer and Socket API for (h)ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

publishes data upon the reception of one Interest (e.g. real time
applications). We describe first the case of asynchronous content
publication and then we will see how applications can use the
producer socket for dealing with dynamic requests.

Application can publish data by calling the sendto API with the
ADU, name, crypto suite for signing the Data Packets and some
optional publication options, such as whether using a transport
manifest or not.

The first operation performed by the producer socket is the data
segmentation and naming: the application content is segmented
into MTU-size Data Packets which are named by combining the
prefix received by the application and a suffix, for unambiguously
identifying the packets in the network. Each Data Packet is then
processed by the Signature routine: depending on the publication
options provided by the application, the routine decides if signing
every packet or groups of packets by using a transport manifest
([11]). Generally speaking, applications producing a large amount
of data such as HTTP servers generally should opt to transport
manifest, since it avoids to compute the signature of every Data
Packet. Other applications, such as RTP clients and servers, could
opt for a per-packet-signature approach, but this are choices made
by the application developer. We will analyze the cost of signing
packets in section 6. As soon as the Data Packet is authenticated, it
is stored in the Data Packet Output Buffer, which function is to store
the Data Packets for matching incoming Interests. Since the size of
this buffer can significantly increase, it likely cannot fit in the main
memory: for this reason we designed it as a two layer cache, where
the L1 cache has a limited size and it is stored in the main memory,
while the L2 cache can be really large and is saved on permanent
storage. The replacement policy of the L1 cache is a socket option
defined by the application itself, and can be FIFO, LRU or LFU. If the
application creates the socket selecting the PROD_UNREL protocol,
the L2 cache is disabled and whenever a Data Packet is removed
from the L1 cache is lost. This case is typical of live and real time
application, where the Data Packet Output Buffer needs to always
store new Packets and discard the old ones. On the other hand,
applications like a File Repository needs their data to be always
available: in this case the L2 cache is required and the PROD_REL
protocol has to be used.

When an Interest Packet is received through the forwarder con-
nector’s recvPacket API, the Producer Socket puts it in an in-
put buffer and then tries to perform a lookup for it in the Data
Packet Output Buffer : if a corresponding Data Packet is found, the
socket replies directly by forwarding it to the connector through the
sendPacket call. In this way the application does not perform any
computation for the incoming request, as they are satisfied directly
by the transport layer (Section 7). If the output buffer does not
contain any matching Data for the interest, the latter is registered
in a Pending Interests table and the socket signals to the application
that the cache miss happened: the signalization is done through the
recvMsg system call, by passing to the application the name of the
Interest and other information (such as a possible interest Payload).
The application can then react to the cache miss by publishing the
content required by the interest, with the production procedure
described above. At the moment of storing the Data Packet into
the Data Packet Output Buffer, one further lookup is done on the
Pending Interests table for checking if it contains a pending request

for the data that is going to be published: if the lookup succeed, the
data packet is forwarded directly to the underlying forwarder con-
nector. This whole procedure allows the socket and the application
to jointly perform the dynamic production of content.

6 PERFORMANCE ANALYSIS
In the following sections, we report the performance evaluation of
our transport layer. We show the performance we achieve using
the per-packet signature and the manifest approach, reporting the
average goodput as well as the communication latency. Moreover,
we compare the performance of our implementation with the TCP
implementation in the Linux kernel and the TCP stack implemented
in VPP. Our goal is to show the state of the art performance of our
transport layer using as a reference the today’s transport layer.

6.1 Experimental settings
The experiments presented in this section are performed using the
vICN framework [40] the following setup. Two Linux containers [2]
deployed on a Cisco UCS Type-C server with an Intel(R) Xeon(R)
CPU E5-2695 v4 and 256 GB of RAM. The two containers manage
an Intel 82599ES 10-Gbps NIC and are connected together through
a 10Gbps Cisco-Nexus 5k. The two NICS are installed in the PCI of
two different NUMA nodes, in order to distribute the workload on 2
different CPUs and improve the memory usage. Processes running
inside LXC, such as VPP and applications, are run with CPU affinity
to cores that are installed into the NUMA node belonging to the
NIC VPP is using. This allows to achieve optimal performance in
terms of memory access latency.

The hICN traffic is forwarded using the VPP forwarder aug-
mented with the hICN plugin described in Section 5, and running
inside both containers. The goal of this experiment is to measure the
performance of our hICN transport, by forwarding traffic between
the two containers. To this end, we wrote a simple application that
sits on top of our transport library and provides statistic regarding
the transport itself, just like iperf [6] for TCP/UDP. To compare
hICN transport layer performance TCP, we use default TCP in the
Linux kernel1 (TCP Cubic) and in VPP (TCP New Reno). We use
the iperf3 tool [6] to test the performance of TCP[6]. The reliable
transport service used in this set of experiments is based on [14]
which implements delay based flow and congestion control.

In the following, we report a summary of an extensive experimen-
tation campaign to benchmark the performance of our transport
services. In particular, we first study the computational cost of
the crypto operations required to compute and verify signatures,
then we evaluate their impact on transport services. To this end,
we consider different scenarios: (1) distribution of static content
that the producer publishes asynchronously, namely Asynchronous
publication (2) communications in which the content is requests
as soon as it is available in the application, namely Synchronous
publication. In (1) the producer segments, names and signs every
requested content a priory, i.e., upon receipt of each interest, the
corresponding Data Packet is already available in the Data Packet
Output Buffer. In (2) the producer segments, names and signs the
application content upon the receiving of the first interest for it.
In all our experiments, the producer publishes (and the consumer
1Kernel version 4.4.0104

ICN ’18, September 21–23, 2018, Boston, MA, USA Mauro Sardara, Luca Muscariello, and Alberto Compagno

retrieves) a content with size 200MB. Moreover, we use RSA and
ECDSA as signing algorithm, choosing a key size of 1024 and 192bits
respectively 2. Finally, we used SHA256 as cryptographic hash algo-
rithm. The crypto library used for the crypto operations is openssl
1.0.2o [5]. All statistics reported below are obtained from at least
30 independent experiments and mean values are reported with a
t-student confidence interval with 99% significance.

6.2 Results
Table 1 shows the goodput of our transport. In both the Synchro-
nous and Asynchronous publication scenarios, the crypto oper-
ations have a considerable impact on the goodput performance.
Obviously, the Asynchronous publication offers better performance
than the Synchronous publication as the signature is computed
offline and it has no impact on the goodput. If we compare the per-
packet verification with the manifest approach, the latter is able to
provide a higher throughput. This is because, signing only mani-
fests reduces the number of signature verification that a consumer
has to perform (about 93% reduction). In this case, the throughput
is limited by the per-packet hash computation (about 140000 hash
calculation - 1.3s), and the cost for the signature verification (about
4000): using RSA-1024 the latter is around 0.208s, whereas using
ECDSA-192 is about 1.6s (cfr. Table 2). We want to stress that we
are not exploiting any dedicated hardware acceleration to speedup
the crypto operations or the segmentation operations. Following
this approach will significantly improve the performance.

In any case, the crypto operations put a boundary on the good-
put of the application: with our software implementation, in case
of verification with manifest, RSA-1024 takes around 1.508s for
verifying 140000 Packets of 1500 bytes, while ECDSA-192 takes 2.9s.
This turns in a maximum goodput of approximately 1.1 Gbps for
RSA-1024 and 580 Mbps for ECDSA-192.

The approach without manifests requires producers and con-
sumers to sign/verify every data packet: in the case of asynchronous
publication, verifying with RSA-1024 allows to reach an acceptable
goodput of 290 Mbps; on the other hand, verifying with packet-wise
ECDSA-192 drops the throughput to 28 Mbps. Synchronous publi-
cation with per-packet signature drops the performance both with
RSA-1024 and ECDSA-192 to 28 and 26 Mbps respectively. These
goodputs are still acceptable for real time applications, where the
rate is low and using manifest could increase the latency.

At last, we compare our performance with the one obtained by
TCP in the same condition. We highlight that the hICN transport
services should not be directly compared with TCP, as the latter
does not provide neither integrity nor data-origin authentication.
Therefore, to have an idea of the gap between our prototype and
TCP, we disable integrity and data-origin authentication and we
report the goodput our hICN transport achieves. In this case, the
kernel implementation of TCP, with hardware accelerations dis-
abled, achieves a goodput equal to 5Gbps while our transport stops
at 2.45Gbps. We stress that, at the time of writing, none of the
existing hardware acceleration for TCP (e.g., TSO, GSO, GRO) is
compatible with our hICN transport layer. Therefore, we believe it
would be unfair to exploit hardware acceleration for TCP. Still, we

2RSA 1024 and ECDSA 192 are considered to offer the same level of security.

report the performance of TCP exploiting the hardware acceleration
for the sake of completeness.

If we consider the two cases of (1) two flows in parallel and (2)
three flows in parallel, the sum of the goodput of each flow reaches
respectively 3.16 and 3.69 Gbps, with a fair share of the available
bandwidth (Jain index ≈ 1). The sum of the three flows goodput is
an indicator of the maximum performance achievable by our hICN
plugin.

Type of test Average 99% CI
hICN Asynchronous Publication

Manifest RSA-1024 928Mbps [919 936]
Packet-wise RSA-1024 290Mbps [283 297]
Manifest ECDSA-192 531Mbps [523 538]
Packet-wise ECDSA-192 28Mbps [27 28]

hICN Synchronous Publication
Manifest RSA-1024 525Mbps [518 532]
Packet-wise RSA-1024 26Mbps [26 27]
Manifest ECDSA-192 530Mbps [522 537]
Packet-wise ECDSA-192 28Mbps [28 29]

hICN Crypto Operations disabled
No signature 2.45Gbps [2.43 2.46]
No signature, 2 transfers 3.16Gbps [3.13 3.19] Jain=0.99
No signature, 3 transfers 3.69Gbps [3.43 3.95] Jain=0.98

TCP - Iperf
Linux TCP (w/ TSO) 9.19Gbps [9.09 9.30]
Linux TCP (w/o TSO) 5.00Gbps [4.88 5.12]
VPP TCP stack 9.24Gbps [9.22 9.26]

Table 1: Average goodput of (a) hICN - Asynchronous publi-
cation (b) hICN - Synchronous publication (c) hICN - Asyn-
chronous publicationw/o crypto operations (d) TCP - Iperf3.

Table 2 shows the time required to compute the crypto opera-
tions. We report the measurements considering two different cases:
(1) crypto-operations performed inside loop on a vector of packets
and (2) crypto-operations performed per packet with a frequency
of 1s. In the first case, the cost of the crypto operation is lower
than in the second case. The explanation for this behavior is the
following: performing crypto-operations on a vector of packets
requires the CPU to spend more time to complete this operations
and therefore it is less likely that the kernel runs a different process
on the same CPU. Therefore, L1 and L2 cache locality is improved
and the number of cache miss is drastically reduced improving the
performance on computing the crypto operations. On the other
hand, processing one packet per second does not allow to exploit
the CPU optimization described before, and this turns in a perfor-
mance worsening. We also show how using jumbo frame helps in
reducing the cost of computing crypto operation. The adoption of
jumbo frames reduces the number of packets generated during the
segmentation operation, thus lower the computational cost per byte
of the hash calculation (from 0.006us with MTU=1.5kB, to 0.003us
with MTU=9KB).

Table 3 reports the impact of the signature computation and
verification on the end to end latency. Upon the interest reception,

A Transport Layer and Socket API for (h)ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

Vector of packets Single packet
Consumer: Signature verification

RSA-1024 52.2us [51.5 52.9] 140us [132 149]
ECDSA-192 412us [406 417] 757us [697 817]

Producer: Signature computation
RSA-1024 440us [437 443] 775us [733 818]
ECDSA-192 380us [377 383] 701us [661 740]

SHA-256 hash computation on MTU packet
1.5kB 9.44us [9.38 9.50] 28.62us [31.03 32.08]
9kB 31.55us [31.03 32.08] 68.26us [63.63 72.89]

Table 2: Cryto operations cost in case of vector of packets
and single packet computation.

the producer creates a new 1500 Bytes Data Packet, sings it and
sends it back to the consumer that verifies the signature. This is a
typical communication pattern of real time application where the
rate is low and the application data can fit in one MTU packet (e.g.
RTP). In this scenario, using a manifest is not the best choice, since
the packets need to be forwarded as soon as the corresponding
interests are received.

The delay introduced by the real time signature/verification
of each packet is significant: with respect to the RTT measured
without any crypto operation (145 us), the delay is one order of
magnitude bigger (1173us for RSA and 1667us for ECDSA).

Type of test Average 99% CI
No signature 145us [136 155]
RSA-1024 1173us [1142 1205]
ECDSA-192 1667us [1621 1712]

Table 3: Average end-to-end latency growth in case of signa-
ture computation and verification.

7 LINEAR VIDEO DISTRIBUTION:
MULTICAST AND SERVER LOAD

Linear video distribution is a challenging test case as it requires
provable QoE in terms of video quality and application respon-
siveness, and is also supposed to scale to a very large number of
watchers. Nowadays, one of the main limitations of the linear video
distribution system are the server endpoints: the fact that a server
needs to maintain a stateful TCP session per user does not scale
when the number of users increases exponentially (think about pop-
ular sport events followed by millions of user). To cope with this,
content providers use to load balance the clients requests among
several instances of the same server for dealing with the problem
of keeping so many TCP sessions open.

A fundamental difference between a TCP and a hICN socket is
the fact that a hICN socket can serve/retrieve data to/from multiple
destinations/sources. This allows to significantly reduce the server
load, which can produce data once, instead of sending it to each
client in unicast. Therefore, consumers’ requests can be served by
the transport itself once the data is made available after production.

In this section, we highlight the benefits produced by inserting
our transport implementation at server side: we show a significant
saving in terms of CPU and memory usage with respect to the
current state of art.

7.1 Experimental setting
We set up a cluster of 150 video clients connected to an Apache
Traffic Server (ATS) [1], configured as an HTTP reverse proxy with
a 2GB cache (1GB of RAM cache and 1GB of raw device cache). As
origin server we use an nginx [3] server live-feeded by a RTMP
stream generated by the Open Broadcaster Software (OBS) [10].
Nginx utilizes the nginx- rtmp [4] module to provide multi-quality
HLS streams.We stream 48 channels, each one encoded in 4 qualities
(using bit rates suggested in [7]) with 2 second segments, ranging
from 360p at 1Mbit/s to 1080p at 6Mbit/s.

To compare our hICN transport with TCP, we connect the ATS
plugin to our hICN sockets and we create one producer socket per
channel, with unreliable publication protocol (CONS_UNREL). For
both TCP and hICN, we run 2 hours experiments for each different
user population (50 100 or 150 clients). Each client requests one
of the 48 available channels; the channel selection follows a Zipf
distribution with α = 1.4 or α = 0.7. In order to increase the accu-
racy of our sampling distribution, we let each client switch channel
every 10 minutes. Fig. 7 summarizes the results. The number of
clients and corresponding average number of channels watched at
the same time are reported in the header of the table.

7.2 Results
Results show that hICN socket considerably reduces the load at ATS
w.r.t. all considered metrics. In particular, they confirm that server
load is proportional to the number of clients while using a TCP
socket, whereas is proportional to the number of channels being
watched, in case of hICN. Moreover, they show that the system
load reduction is considerable. For example, with 150 clients, ATS
receives 80% less GET requests with hICN. Additionally, the hICN
socket reduces memory utilization in ATS to about 60MB. This is
because the hICN socket satisfies subsequent requests without pass-
ing them to the application. Therefore, as the caching replacement
algorithm implemented in ATS is scan resistant, i.e., one-time GET
requests do not affect the cache state, no entry is added into the
cache.

Fig. 8 shows the ratio between the traffic sent by ATS and the
total amount of traffic received by the clients using hICN. We show
the results only for hICN, because for TCP this value is always
equal to 100%, since all requests are served directly by ATS. The
plot confirms that hICN can reduce the load on the server by more
than 80%, depending on the considered workload.

We expect that the absence of a state machine in sockets will
further diminish CPU and memory requirements on the server.
Those metrics are however difficult to compare in the present state
of implementation and we plan to perform a thorough comparison
in future work.

8 RELATEDWORK
Most of the work on transport layer for ICN has focused on con-
gestion control which is receiver-driven as opposed to the current

ICN ’18, September 21–23, 2018, Boston, MA, USA Mauro Sardara, Luca Muscariello, and Alberto Compagno

Metric N=50 [C=14] N=100 [C=22] N=150 [C=26]
IP/TCP (h)ICN IP/TCP (h)ICN IP/TCP (h)ICN

R 438.6 128.5 937.8 192.0 1380.0 247.8
h/m 202.1 / 236.5 0 / 128.5 488.2 / 449.6 0 / 192.0 753.4 / 626.6 0 / 247.8
mem 1243.1 58.6 1311.7 62.8 1430.5 60.7
cpu 17.4 ±9.3 5.7 ±5.2 30.7 ±12.1 7.5 ±6.0 45.2 ±15.5 8.7 ±7.5

R : #requests (.103), h/m: cache hits/miss (.103), mem: total memory (MiB) and cpu: avg CPU usage (%)

Figure 7: ATS performance metrics with N clients (resulting in C active channels) with channel popularity ∼ Zipf(α=1.4).

 0

 20

 40

 60

 80

 100

50 100 150

fr
o

m
 A

T
S

 [
%

]
T

ra
ff

ic
 g

e
n

e
ra

te
d

Clients

α=0.7
α=1.4

Figure 8: Percentage of traffic served by ATS using hICN.

sender-based TCP/IP model. Also (h)ICN transport does not require
connection instantiation and accommodates retrieval from possibly
multiple dynamically discovered sources.

It builds upon the flow balance principle guaranteeing corre-
sponding request-data flows on a hop-by-hop basis [8]. A large
body of work has looked into ICN transport (surveyed in [38]), not
only to propose rate and congestion control mechanisms [39, 44] –
especially in the multipath case [14], [29], [41] – but also to high-
light the interaction with in-network caching [13], the coupling
with request routing [14, 24], and the new opportunities provided
by in-network hop-by-hop rate/loss/congestion control [12, 15, 43]
for a more reactive low latency response.

Other work on the description of a transport layer and a socket
API has appeared in [19] and [32]. However, none evaluates the per-
formance of such transport stack and the design trade offs that need
to be considered for different applications. Moreover, unlike [32],
our socket API does not require to the application developer to
implement signature calculation and verification, but offers them as
a transport service. In the area of transport services and related API
recent work at the IETF is considering the problem of providing
and novel transport service API to replace the BSD like socket API.
Relevant work is [37] and more generally the effort in the TAPSWG
and the NEAT project [9]. [22] considers Hadoop on top of NDN
by means of a Socket API that is very specific to this application,
i.e. the ambition is not to provide a general transport service to any
kind of application like in this paper.

9 DISCUSSION AND CONCLUSION
In this paper we have presented the design, implementation and
benchmarking of a transport layer for (h)ICN with a socket API
for applications. The implementation is based on a fast transport

stack in userspace with kernel bypass based on VPP and DPDK.
The present contribution applies to NDN/CCN and hICN and is
currently open sourced in the Linux Foundation project FD.io [17].

We believe that such a transport layer allows to easily insert
(h)ICN in today’s applications such as web services and to develop
new ones in a simpler way. The choice to build a transport stack
in userspace allows to integrate new extension rapidly with little
effort with no performance trade-off.

We have evaluated the transport layer in terms of performance
and compared the implementation with the Linux TCP and the VPP
TCP stack to have a baseline reference in terms of performance
target for benchmark workloads. Experimental results in Section 6
show that the crypto operations have a significant impact on the
overall transport performance, both in terms of application goodput
and latency. This overhead can be easily reduced by offloading them
to dedicated hardware such as Intel OAT acceleration available in
the core itself or in external chips. Performing them in software
is expensive and impairs the long term scalability of the transport
stack. Even using a recent CPU technology, the delay introduced
by crypto operations significantly restricts the maximum achiev-
able throughput, and also the signature/verification performance
becomes really system dependent.

The availability of hardware offloading techniques for the trans-
port layer tends to be appearwhen needed. As an example, TSO/LRO
is available already in any end device with Gbps interfaces, includ-
ing laptops. The large usage of TLS in the Internet is also going
to make several cryptographic accelerations available in silicon
through most used crypto library, both for client end devices, in-
cluding mobiles, and server ends. In this paper we have shown that
a pure software implementation can still provide decent perfor-
mance with several limitations. This reality check allows to claim
that many applications, such as video delivery and real time com-
munications, are feasible with an (h)ICN software stack that is
portable into a large set of end devices. The current design and
implementation has been already used to enable (h)ICN transport
in WebRTC for RTP transported media.

While the transport layer that we present in this paper consti-
tutes a fundamental component for integration of ICN into today’s
and future application, we recognize that named data provides a
larger degree of freedom in the way application namespaces are
mapped into network namespaces. Future work is needed to make
further progress to define an additional session layer, where appli-
cation namespaces are multiplexed into multiple network names-
paces.

A Transport Layer and Socket API for (h)ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

REFERENCES
[1] 2018. Apache Traffic Server. http://trafficserver.apache.org/
[2] 2018. lxc. https://linuxcontainers.org/.
[3] 2018. nginx. https://nginx.org/en/.
[4] 2018. nginx RTMP module. https://nginx.org/en/.
[5] 2018. openSSL. https://www.openssl.org/.
[6] 2018. Iperf. https://iperf.fr.
[7] 2018. Live encoder settings, bitrates, and resolutions. http://goo.gl/tDtc1i.
[8] 2018. NDN project, Named-Data Networking Principles. https://named-data.net/

project/ndn-design-principles/.
[9] 2018. The NEAT project. https://www.neat-project.org
[10] 2018. Open Broadcaster Software (OBS). https://obsproject.com/.
[11] M. Baugher, B. Davie, A. Narayanan, and D. Oran. 2012. Self-verifying names for

read-only named data. In Proc. of IEEE INFOCOM 2012 Workshops. Orlando, FL,
USA, 274–279.

[12] G. Carofiglio, M. Gallo, and L. Muscariello. 2012. Joint Hop-by-hop and Receiver-
driven Interest Control Protocol for Content-centric Networks. ACM SIGCOMM
Computer Communication Review 42, 4 (2012), 491–496.

[13] G. Carofiglio, M. Gallo, and L. Muscariello. 2013. On the Performance of Band-
width and Storage Sharing in Information-centric Networks. Computer Networks
57, 17 (Dec. 2013), 3743–3758.

[14] G. Carofiglio, M. Gallo, and L. Muscariello. 2016. Optimal multipath congestion
control and request forwarding in information-centric networks: Protocol design
and experimentation. Computer Networks 110 (2016), 104–117.

[15] G. Carofiglio, L. Muscariello, M. Papalini, N. Rozhnova, and X. Zeng. 2016. Lever-
aging ICN In-network Control for Loss Detection and Recovery in Wireless
Mobile Networks. In Proc. of the 3rd ACM SIGCOMM ICN (’16). New York, NY,
USA, 50–59.

[16] Dino Farinacci, Vince Fuller, DavidMeyer, and Darrel Lewis. 2013. The Locator/ID
Separation Protocol (LISP). RFC 6830. https://doi.org/10.17487/RFC6830

[17] Linux Foundation FD.io. 2018. CICN project, wiki page. https://wiki.fd.io/view/
Cicn.

[18] International Organization for Standardization (ISO). 2012. ISO 26324:2012 Infor-
mation and documentation – Digital object identifier system.

[19] M. Gallo, L. Gu, D. Perino, andM. Varvello. 2014. NaNET: Socket API and Protocol
Stack for Process-to-content Network Communication. In Proc. of the 1st ACM
SIGCOMM ICN (’14). New York, NY, USA, 185–186.

[20] C. Ghali, A. Narayanan, D. Oran, G. Tsudik, and C. A. Wood. 2015. Secure
Fragmentation for Content-Centric Networks. In 2015 IEEE 14th International
Symposium on Network Computing and Applications. 47–56. https://doi.org/10.
1109/NCA.2015.34

[21] C. Ghali, G. Tsudik, and C. A. Wood. 2016. Network Names in Content-Centric
Networking. In Proc. of the 3rd ACM SIGCOMM ICN (’16). New York, NY, USA,
132–141.

[22] Mathias Gibbens, Chris Gniady, Lei Ye, and Beichuan Zhang. 2017. Hadoop on
Named Data Networking: Experience and Results. Proc. ACMMeas. Anal. Comput.
Syst. 1, 1, Article 2 (June 2017), 21 pages. https://doi.org/10.1145/3084439

[23] R.E. Gilligan, J. McCann, J. Bound, and S. Thomson. 2003. Basic Socket Interface
Extensions for IPv6. Technical Report 3493. https://rfc-editor.org/rfc/rfc3493.txt

[24] S. Ioannidis and E. Yeh. 2017. Jointly optimal routing and caching for arbitrary
network topologies. In Proc. of the 4th ACM SIGCOMM ICN (’17). Berlin, Germany,
77–87.

[25] A. Langley et al. 2017. The QUIC Transport Protocol: Design and Internet-Scale
Deployment. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 183–196.
https://doi.org/10.1145/3098822.3098842

[26] Linguaglossa, Leonardo and Rossi, Dario and Pontarelli, Salvatore and Barach,
Dave and Marjon, Damjan and Pfister, Pierre. 2018. High-speed Soft-
ware Data Plane via Vectorized Packet Processing. https://perso.telecom-
paristech.fr/drossi/paper/vpp-bench-techrep.pdf.

[27] Linux Foundation FD.io. 2018. White Paper - Vector Packet Processing - One Ter-
abit Software Router on Intel Xeon Scalable Processor Family Server. https://fd.io.

[28] University of Pisa Luigi Rizzo. 2018. Netmap - the fast packet I/O framework.
http://info.iet.unipi.it/ luigi/netmap/.

[29] Milad Mahdian, Somaya Arianfar, Jim Gibson, and Dave Oran. 2016. MIRCC:
Multipath-aware ICN Rate-based Congestion Control. In Proceedings of the 3rd
ACM Conference on Information-Centric Networking (ACM-ICN ’16). ACM, New
York, NY, USA, 1–10. https://doi.org/10.1145/2984356.2984365

[30] Michael H. Mealling. 2001. A URN Namespace of Object Identifiers. RFC 3061.
https://doi.org/10.17487/RFC3061

[31] Michael H. Mealling. 2001. The Network Solutions Personal Internet Name
(PIN): A URN Namespace for People and Organizations. RFC 3043. https:
//doi.org/10.17487/RFC3043

[32] I. Moiseenko, L. Wang, and L. Zhang. 2015. Consumer / Producer Communication
with Application Level Framing in Named Data Networking. In Proc. of the 2nd
ACM SIGCOMM ICN (’15). New York, NY, USA, 99–108.

[33] Marc Mosko, Ignacio Solis, and Christopher A. Wood. 2018. CCNx
Messages in TLV Format. Internet-Draft draft-irtf-icnrg-ccnxmessages-08.
Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-irtf-icnrg-ccnxmessages-08 Work in Progress.

[34] Marc Mosko, Ignacio Solis, and Christopher A. Wood. 2018. CCNx Semantics.
Internet-Draft draft-irtf-icnrg-ccnxsemantics-09. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-ccnxsemantics-09 Work in
Progress.

[35] M. Mosko and C. A. Wood. 2015. Secure Fragmentation for Content Centric
Networking. In 2015 IEEE 12th International Conference on Mobile Ad Hoc and
Sensor Systems. 506–512. https://doi.org/10.1109/MASS.2015.51

[36] Luca Muscariello, Giovanna Carofiglio, Jordan Auge, and Michele Papalini. 2018.
Hybrid Information-Centric Networking. Internet-Draft draft-muscariello-intarea-
hicn-00. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-muscariello-intarea-hicn-00 Work in Progress.

[37] Tommy Pauly, Brian Trammell, Anna Brunstrom, Gorry Fairhurst, Colin Perkins,
Philipp S. Tiesel, and Christopher A. Wood. 2018. An Architecture for Transport
Services. Internet-Draft draft-pauly-taps-arch-00. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/html/draft-pauly-taps-arch-00 Work in
Progress.

[38] Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang. 2016. Congestion Control in
Named Data Networking - A Survey. Computer Communications 86, C (July 2016),
1–11.

[39] L. Saino, C. Cocora, and G. Pavlou. 2013. CCTCP: A scalable receiver-driven
congestion control protocol for content centric networking. In Proc. of IEEE ICC
2013. Budapest, Hungary, 3775–3780.

[40] M. Sardara, L.Muscariello, J. Augé,M. Enguehard, A. Compagno, andG. Carofiglio.
2017. Virtualized ICN (vICN): Towards a Unified Network Virtualization Frame-
work for ICN Experimentation. In Proc. of the 4th ACM SIGCOMM ICN (ICN ’17).
ACM, New York, NY, USA, 109–115.

[41] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. 2016. A Practical
Congestion Control Scheme for Named Data Networking. In Proceedings of the
3rd ACM Conference on Information-Centric Networking (ACM-ICN ’16). ACM,
New York, NY, USA, 21–30. https://doi.org/10.1145/2984356.2984369

[42] The Linux Foundation Projects. 2018. Data Plane Development Kit.
https://dpdk.org.

[43] Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee. 2013. An Improved
Hop-by-hop Interest Shaper for Congestion Control in Named Data Networking.
ACM SIGCOMM Computer Communication Review 43, 4 (2013), 55–60.

[44] F. Zhang, Y. Zhang, A. Reznik, H. Liu, C. Qian, and C. Xu. 2014. A transport
protocol for content-centric networking with explicit congestion control. In Proc.
of the 23rd ICCCN 2014. Shanghai, China, 1–8.

http://trafficserver.apache.org/
https://linuxcontainers.org/
https://nginx.org/en/
https://nginx.org/en/
https://www.openssl.org/
http://goo.gl/tDtc1i
https://named-data.net/project/ndn-design-principles/
https://named-data.net/project/ndn-design-principles/
https://www.neat-project.org
https://obsproject.com/
https://doi.org/10.17487/RFC6830
https://wiki.fd.io/view/Cicn
https://wiki.fd.io/view/Cicn
https://doi.org/10.1109/NCA.2015.34
https://doi.org/10.1109/NCA.2015.34
https://doi.org/10.1145/3084439
https://rfc-editor.org/rfc/rfc3493.txt
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/2984356.2984365
https://doi.org/10.17487/RFC3061
https://doi.org/10.17487/RFC3043
https://doi.org/10.17487/RFC3043
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-ccnxmessages-08
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-ccnxmessages-08
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-ccnxsemantics-09
https://doi.org/10.1109/MASS.2015.51
https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-00
https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-00
https://datatracker.ietf.org/doc/html/draft-pauly-taps-arch-00
https://doi.org/10.1145/2984356.2984369

	Abstract
	1 Introduction
	2
	3 Architecture
	4 Transport Services
	4.1 End-points description
	4.2 Network namespaces
	4.3 Socket API

	5 Implementation
	5.1 VPP: vector packet processor
	5.2 Forwarder Connector
	5.3 Consumer Socket
	5.4 Producer Socket

	6 Performance Analysis
	6.1 Experimental settings
	6.2 Results

	7 Linear video distribution: Multicast and Server Load
	7.1 Experimental setting
	7.2 Results

	8 Related Work
	9 Discussion and Conclusion
	References

